DRM and Nova

GPU Driver (Update)
5

Danilo Krummrich, Red Hat

Joel Fernandes, Nvidia

Kangrejos ‘2

Nova - Recap

What is Nova?

e Driver for NVIDIA GPUs based on the “GPU System Processor” (GSP)
o GSP provides firmware API = serves as HAL

e Successor of Nouveau for all GSP-based GPUs (Turing and later)
e Written in Rust

Nova - Recap

What’s the motivation for a rewrite?

Various (design) problems in Nouveau
Reduce complexity (GSP only gets us rid of legacy code)
Make the driver accessible for (new) contributors

Provide a common firmware and hardware abstraction layer as a separate
driver module

Nova - Digression (Driver Stack)

® Nova-core
o Core driver module providing a
firmware and hardware abstraction
layer
® nova-drm

o DRM driver connected to nova-core
via auxiliary bus

e NVIDIA vGPU

o VFIO driver managing PCl virtual
functions (SR-IOV)

Mesa etc.

Nova-DRM

]

Userspace (VM)

Kernelspace (VM)

Nova-Core

A

VvGPU Manager

Nova-Core

GPU

Kernelspace (Host)

vGPUL1 could be given to another VM (not shown)

Hardware

Nova - Recap

What’s the motivation for using Rust?

e Advance Rust in the kernel (and in DRM)
e Take advantage of Rust
o memory safety features
o powerful type system
e Maintainable abstraction layer for unstable firmware APIs
(type system, procedural macros)

Nova - Recap

What were the challenges when Nova started 1 V2 years ago?

1. Convince people Nova is the way forward
o NVIDIA posted first vGPU RFC
o Dave Airlie wrote a nova-core PoC driver

2. Rust Driver infrastructure upstream
o Fundamental Rust infrastructure in place
m e.g. abstraction design, locking, reference counts, etc.
© Rust Driver infrastructure missing (no user)
m e.g. device/driver model, specific bus support, device resource management,
memory-mapped I/O, memory allocation primitives, DMA, etc.

Nova - Upstream Strategy

e © chicken and egg problem

o Nova (as a complete driver stack) is too big of a lift
o Building on non-upstream infrastructure is a waste of time

e Develop Nova (nova-core, nova-drm) in-tree
o Start with just skeleton drivers upstream

Nova - Upstream Strategy

e o initial Rust Driver infrastructure and Nova skeleton drivers upstream
Generic Device / Driver model
PCI, platform, auxiliary bus infrastructure
Device resource management
Memory-mapped I/O
Firmware loader
DMA & Scatterlist
Memory allocation API
m Allocators (Kmalloc, Vmalloc, KVmalloc),
m KBox, VBox, KVBox, KVec, etc.
o DRM device / driver, GEM, File, IOCTL
O nova-core, nova-drm
o = Maintainer of the mentioned infrastructure (and quite some more)

O 0O O 0O O O O

Nova - Development

Who’s doing all the Nova driver work?

Nova - Development

e NVIDIA engineers contributing to the Nova driver project
o Contribute the majority of the nova-core code
m Thanks to Alexandre Courbot, John Hubbard,
Joel Fernandes, Alistair Popple, et al.!
o = Alexandre Courbot Co-Maintainer of nova-core

e My roleis leading the Nova project overall
o Ensure we stay on track regarding original project goals
o Tackle design topics, e.g. firmware abstraction, VM_BIND and page table
management interactions, inter-driver APIs, etc.
o Work on DRM infrastructure and more Nova (DRM) code

Nova - Development

First Project Milestone:

Run vGPU on top of nova-core.

DRM Rust - Status

® Tyr (Mali GPU) driver (Daniel Almeida, Alice Rhyl)

o follows Nova’s approach of in-tree development
o Tyr skeleton driver just hit the DRM tree (goes to Linus for v6.18)

e Rust VKMS (Virtual Kernel Mode Setting) by Lyude Paul

o paving the way for DRM KMS driver infrastructure
o Nova is not ready for KMS yet

e Apple AGX (Janne Grunau)

o originally OOT, but tries to land skeleton in-tree as well
o patches should be posted soon

DRM Rust - Status

® Two DRM drivers in development in-tree
o rVKMS and Apple AGX upcoming
e Nova had its own tree; Try was targeting drm-misc

® o drm-misc tree does not scale (initially)

o DRM core infrastructure + (small) drivers with low patch traffic

e o drm-rust tree (M: Alice Ryhl, M: Danilo Krummrich)
o Shared (open comitter) tree for
m (Rust) DRM core infrastructure
m in-tree DRM Rust drivers (in development)
m external dependencies (case by case and when it makes sense)

DRM Rust - Upcoming

® DRM GPUVM Rust infrastructure

o GPU virtual address space manager
o Alice Ryhl works on C improvements
m Streamline different locking schemes

e DRM Jobqueue (Philipp Stanner)
o Replacement for DRM GPU scheduler
o GPUs with Firmware scheduler support only
o First native Rust (DRM) component

Bring-up status

Firmware is now up (booting various microprocessors, bringing up RPC)

e Ampere (RTX 30 series.) — works

e Ada (RTX 40 series) — works

e Blackwell (RTX 50 series) — working but not yet posted
e Turing GPUs (RTX 20 series) — WIP

debugfs

e Matthew Maurer submitted v11 - should be close to merge.

e Support for binary files needed
o GSP logs into coherent DMA buffers
o Log format not open source but helps Nvidia engineers
o Log can be provided to Nvidia as needed for decoding

e Already instrumental in GPU bringup debugging.

MM updates

Buddy allocator prototype - completed but not yet posted.

o Simple zoned buddy system.
o Tested with Nova-core page table allocations.
o Q: Do we keep this within nova-core, or move it to rust/kernel/mm/ ?
m Can doitif other drivers use it, OR nova-core is Ok to mature it more.
m Has some Nvidia-isms like zones specific to us. But lot of code is generic.
o Similar to drm_buddy, but simpler (no binary tree)

o Does not require interfacing with C code/bindings.

MM updates
PRAMIN aperture helps write directly to VRAM (bootstrap).

O

CPU

PCIe |
— >

GPU

PBUS
(Bus Controller)

PRAMIN
Window <

(1MB)

v

VRAM
(Multiple GBs)

FBL[0x000000000000]

FB[@x7FFFFFFFFFF]

BARO + 0x700000 (Start location)

MM updates: Bitfield support for Rust structs (v3)

o Required for bitfield-packed structures, such as page table entries.
o An example:

bitfield! {
pub struct ControlReg: u32 {
3:0 mode as us§;

7 state as bool;

}

// let reg = ControlReg::default().set_mode(3);

MM updates: Bitfield open question 1- hidden bits

o Required for bitfield-packed structures, such as page table entries.
o An example:

bitfield! {
pub struct ControlReg: u32 {

3:0 mode as u8;

}

// let reg = ControlReg: :from(OxFF);

// What happens to bits 4-7

MM updates: Bitfield open question 2 - size of field exceeds

O

Required for bitfield-packed structures, such as page table entries.
An example:

O

bitfield! {
pub struct ControlReg: u8 {

3:0 mode as u32: // needs to be ‘as u8 => u32’

}

// Won’t compile: ControlReg::default().set_mode(10).mode()

MM updates: Page table walk: BART mapping support

e Required for Virtual Address space access to VRAM
e 256MB on most GPUs.
e Thisis how BOs are accessed directly from CPU without DMA.
o Prototype of GPU VA to PA translation completed
o Next: upstreaming of page table/directory entry structures
o Next: upstreaming of low-level page table walker (Nvidia specific).
o Q: What’s the next logical step:
m Do we integrate into GPUVM? What'’s the next logical step.

m For VA allocation/free, do we reuse maple tree?

MM updates: Upstream Stages

—

Bitfield

Buddy allocator

PRAMIN support

Page table structures

Page walker (depends on all 4 above)

Bar1 mappings (depends on all 5 above)

VA allocation/free (for kernel carve outs of VA space using Maple Tree)

Exposing low-level page table operations to users (GPUVM)

© ® g4 O 0 k& W N

TTM integration

IRQ updates

e Daniel Almeida’s patchset for request_irg is now in -next (yayy!).
e Next: MSI/MSI-X IRQ vector allocation
o Joel posted patch (v1)
o Comments posted by Danilo:
m Devres integration - WIP
m Next: need better representation of IRQ numbers, vector idx

e TODO: Update this bullet with more info from latest discussion.

IRQ updates

e VFN (virtual function notifier) is the latest incarnation of IRQ controller in Nvidia hardware.
e VFN (Virtual Function Notifier) - prototyped
o Next: need to post it upstream.

o Next: GSP RPC as the first user of IRQ support (currently polling)

e Joel has working prototype of GSP interrupt handling in nova-core using VFN, MSI

vector, request_irg patches, etc.

Documentation efforts

e Nova-core emphasizes high documentation quality
e C(Clearly defined registers

e Code comments

e No magic numbers

e Mostly readable code over past open source drivers.

Nova: Calling kernel modules from C to Rust

Nova has to be supported as a kernel module and other kernel modules need to
be able to call into it.

This is central to Nvidia driver deployments, an installer uses DKMS to load
modules.

Simple experiments show function calling from C to Rust works well even across
loadable kernel modules.

Any other pitfalls?

