
DRM and Nova
GPU Driver (Update)

Kangrejos ‘25

Danilo Krummrich, Red Hat
Joel Fernandes, Nvidia

What is Nova?

● Driver for NVIDIA GPUs based on the “GPU System Processor” (GSP)

○ GSP provides firmware API ⇨ serves as HAL
● Successor of Nouveau for all GSP-based GPUs (Turing and later)
● Written in Rust

Nova - Recap

What’s the motivation for a rewrite?

● Various (design) problems in Nouveau
● Reduce complexity (GSP only gets us rid of legacy code)
● Make the driver accessible for (new) contributors
● Provide a common firmware and hardware abstraction layer as a separate

driver module

Nova - Recap

● nova-core
○ Core driver module providing a

firmware and hardware abstraction
layer

● nova-drm
○ DRM driver connected to nova-core

via auxiliary bus

● NVIDIA vGPU
○ VFIO driver managing PCI virtual

functions (SR-IOV)

Nova - Digression (Driver Stack)

What’s the motivation for using Rust?

● Advance Rust in the kernel (and in DRM)
● Take advantage of Rust

○ memory safety features
○ powerful type system

● Maintainable abstraction layer for unstable firmware APIs
(type system, procedural macros)

Nova - Recap

What were the challenges when Nova started 1 ½ years ago?

1. Convince people Nova is the way forward
○ NVIDIA posted first vGPU RFC
○ Dave Airlie wrote a nova-core PoC driver

2. Rust Driver infrastructure upstream
○ Fundamental Rust infrastructure in place

■ e.g. abstraction design, locking, reference counts, etc.
○ Rust Driver infrastructure missing (no user)

■ e.g. device/driver model, specific bus support, device resource management,
memory-mapped I/O, memory allocation primitives, DMA, etc.

Nova - Recap

● ⇨ chicken and egg problem
○ Nova (as a complete driver stack) is too big of a lift
○ Building on non-upstream infrastructure is a waste of time

● Develop Nova (nova-core, nova-drm) in-tree
○ Start with just skeleton drivers upstream

Nova - Upstream Strategy

● ⇨ initial Rust Driver infrastructure and Nova skeleton drivers upstream
○ Generic Device / Driver model
○ PCI, platform, auxiliary bus infrastructure
○ Device resource management
○ Memory-mapped I/O
○ Firmware loader
○ DMA & Scatterlist
○ Memory allocation API

■ Allocators (Kmalloc, Vmalloc, KVmalloc),
■ KBox, VBox, KVBox, KVec, etc.

○ DRM device / driver, GEM, File, IOCTL
○ nova-core, nova-drm
○ ⇨ Maintainer of the mentioned infrastructure (and quite some more)

Nova - Upstream Strategy

Who’s doing all the Nova driver work?

Nova - Development

● NVIDIA engineers contributing to the Nova driver project
○ Contribute the majority of the nova-core code

■ Thanks to Alexandre Courbot, John Hubbard,
Joel Fernandes, Alistair Popple, et al.!

○ ⇨ Alexandre Courbot Co-Maintainer of nova-core

● My role is leading the Nova project overall
○ Ensure we stay on track regarding original project goals
○ Tackle design topics, e.g. firmware abstraction, VM_BIND and page table

management interactions, inter-driver APIs, etc.
○ Work on DRM infrastructure and more Nova (DRM) code

Nova - Development

Nova - Development

First Project Milestone:

Run vGPU on top of nova-core.

● Tyr (Mali GPU) driver (Daniel Almeida, Alice Rhyl)
○ follows Nova’s approach of in-tree development
○ Tyr skeleton driver just hit the DRM tree (goes to Linus for v6.18)

● Rust VKMS (Virtual Kernel Mode Setting) by Lyude Paul
○ paving the way for DRM KMS driver infrastructure
○ Nova is not ready for KMS yet

● Apple AGX (Janne Grunau)
○ originally OOT, but tries to land skeleton in-tree as well
○ patches should be posted soon

DRM Rust - Status

● Two DRM drivers in development in-tree
○ rVKMS and Apple AGX upcoming

● Nova had its own tree; Try was targeting drm-misc

● ⇨ drm-misc tree does not scale (initially)
○ DRM core infrastructure + (small) drivers with low patch traffic

● ⇨ drm-rust tree (M: Alice Ryhl, M: Danilo Krummrich)
○ Shared (open comitter) tree for

■ (Rust) DRM core infrastructure
■ in-tree DRM Rust drivers (in development)
■ external dependencies (case by case and when it makes sense)

DRM Rust - Status

● DRM GPUVM Rust infrastructure
○ GPU virtual address space manager
○ Alice Ryhl works on C improvements

■ Streamline different locking schemes

● DRM Jobqueue (Philipp Stanner)
○ Replacement for DRM GPU scheduler
○ GPUs with Firmware scheduler support only
○ First native Rust (DRM) component

DRM Rust - Upcoming

Bring-up status

Firmware is now up (booting various microprocessors, bringing up RPC)

● Ampere (RTX 30 series.) – works

● Ada (RTX 40 series) – works

● Blackwell (RTX 50 series) – working but not yet posted

● Turing GPUs (RTX 20 series) – WIP

debugfs

● Matthew Maurer submitted v11 - should be close to merge.

● Support for binary files needed

○ GSP logs into coherent DMA buffers

○ Log format not open source but helps Nvidia engineers

○ Log can be provided to Nvidia as needed for decoding

● Already instrumental in GPU bringup debugging.

MM updates

Buddy allocator prototype - completed but not yet posted.

○ Simple zoned buddy system.

○ Tested with Nova-core page table allocations.

○ Q: Do we keep this within nova-core, or move it to rust/kernel/mm/ ?

■ Can do it if other drivers use it, OR nova-core is Ok to mature it more.

■ Has some Nvidia-isms like zones specific to us. But lot of code is generic.

○ Similar to drm_buddy, but simpler (no binary tree)

○ Does not require interfacing with C code/bindings.

MM updates
○ PRAMIN aperture helps write directly to VRAM (bootstrap).

 ┌─────────────────┐ PCIe ┌──────────────────────────────┐
 │ CPU │◄───────── ─►│ GPU │
 └─────────────────┘ │ │
 │ ┌──────────────────────┐ │
 │ │ PBUS │ │
 │ │ (Bus Controller) │ │
 │ │ │ │
 │ │ ┌──────────────┐ │ │
 │ │ │ PRAMIN │ │ │
 │ │ │ Window │◄───┼────┼── BAR0 + 0x700000 (Start location)
 │ │ │ (1MB) │ │ │
 │ │ └──────────────┘ │ │
 │ │ │ │ │
 │ └─────────┼────────────┘ │
 │ │ │
 │ ▼ │
 │ ┌──────────────────────┐ │
 │ │ VRAM │ │
 │ │ (Multiple GBs) │ │
 │ │ │ │
 │ │ FB[0x000000000000] │ │
 │ │ ... │ │
 │ │ FB[0x7FFFFFFFFFF] │ │
 │ └──────────────────────┘ │
 └──────────────────────────────┘

MM updates: Bitfield support for Rust structs (v3)

○ Required for bitfield-packed structures, such as page table entries.
○ An example:

bitfield! {

 pub struct ControlReg: u32 {

 3:0 mode as u8;

 7 state as bool;

 }

}

// let reg = ControlReg::default().set_mode(3);

MM updates: Bitfield open question 1 - hidden bits

○ Required for bitfield-packed structures, such as page table entries.
○ An example:

bitfield! {

 pub struct ControlReg: u32 {

 3:0 mode as u8;

 }

}

// let reg = ControlReg::from(0xFF);

// What happens to bits 4-7

MM updates: Bitfield open question 2 - size of field exceeds

○ Required for bitfield-packed structures, such as page table entries.
○ An example:

bitfield! {

 pub struct ControlReg: u8 {

 3:0 mode as u32; // needs to be ‘as u8 => u32’

 }

}

// Won’t compile: ControlReg::default().set_mode(10).mode()

MM updates: Page table walk: BAR1 mapping support
● Required for Virtual Address space access to VRAM

● 256MB on most GPUs.

● This is how BOs are accessed directly from CPU without DMA.

○ Prototype of GPU VA to PA translation completed

○ Next: upstreaming of page table/directory entry structures

○ Next: upstreaming of low-level page table walker (Nvidia specific).

○ Q: What’s the next logical step:

■ Do we integrate into GPUVM? What’s the next logical step.

■ For VA allocation/free, do we reuse maple tree?

MM updates: Upstream Stages

1. Bitfield

2. Buddy allocator

3. PRAMIN support

4. Page table structures

5. Page walker (depends on all 4 above)

6. Bar1 mappings (depends on all 5 above)

7. VA allocation/free (for kernel carve outs of VA space using Maple Tree)

8. Exposing low-level page table operations to users (GPUVM)

9. TTM integration

IRQ updates

● Daniel Almeida’s patchset for request_irq is now in -next (yayy!).

● Next: MSI/MSI-X IRQ vector allocation

○ Joel posted patch (v1)

○ Comments posted by Danilo:

■ Devres integration - WIP

■ Next: need better representation of IRQ numbers, vector idx

● TODO: Update this bullet with more info from latest discussion.

IRQ updates

● VFN (virtual function notifier) is the latest incarnation of IRQ controller in Nvidia hardware.

● VFN (Virtual Function Notifier) - prototyped

○ Next: need to post it upstream.

○ Next: GSP RPC as the first user of IRQ support (currently polling)

● Joel has working prototype of GSP interrupt handling in nova-core using VFN, MSI

vector, request_irq patches, etc.

Documentation efforts

● Nova-core emphasizes high documentation quality

● Clearly defined registers

● Code comments

● No magic numbers

● Mostly readable code over past open source drivers.

Nova: Calling kernel modules from C to Rust
● Nova has to be supported as a kernel module and other kernel modules need to

be able to call into it.

● This is central to Nvidia driver deployments, an installer uses DKMS to load

modules.

● Simple experiments show function calling from C to Rust works well even across

loadable kernel modules.

● Any other pitfalls?

